Published:

Climate Change, Engineering, Stationarity and Applied Climate

or

Something New, Something Fantastic

Some years ago there was a Brevity comic strip with a man, John, standing at the supermarket checkout. The caption was, “Suddenly John realized he didn't want paper or plastic. He wanted something new… something fantastic.” You can see it here.

I try in my WU blog to find a niche that is different from other climate and climate-change blogs. I imagine that I synthesize information, and I introduce how climate change fits into the proverbial big picture. The blog started after I had been teaching for a while, and both the blog and my class on climate-change problem solving have evolved over the past 8 years. My research has evolved as well, focusing more and more on the usability of climate knowledge in planning and management – whatever that means. All together, what I do has evolved, and this semester at University of Michigan I am taking on a new role to grow a Masters of Engineering in Applied Climate. This notion has been in a slow yeasty ferment for a few years. It is something new. Hope it will turn into something fantastic.

I have the intention of putting more material online, or in many cases better organizing the material that I have online. My experience, so far, is that massively open online courses (MOOCs) are not so effective in the sort of material and context that I want to teach. I have noticed in the blog comments that some of you have flirted with or taken online courses. I’d be very interested in learning about your experience, and perhaps, even, something of a review.

For the past few weeks I have been preparing for the applied climate venture. One of my goals is to connect our knowledge of climate change with engineering design. Our response to climate change will often be expressed in engineering. Some engineering projects will be direct interventions, perhaps in the spirit of the Thames River Barrier. Other examples of engineering will be in energy systems, water management, roads and seaports. Then there will be pervasive changes in construction materials, codes, standards and practices.

During 2011 and 2012, I was the member of the External Advisory Board of The Partnership for Education on Climate Change, Engineered Systems and Society. This was a research effort of the US National Academy of Engineering. The goal of this effort was to transform engineering education to prepare current and future engineers, policymakers and the public to meet the challenges of climate change. Deliberations of the Advisory Board included the need to better frame climate-change science so that it could be integrated into design and engineering and specifically, how to incorporate changing weather patterns into engineering. In a number of other meetings of engineers, I have carried the banner of climate change. A repeated theme is how to use the knowledge of climate change in, for example, designing water and transportation infrastructure. (By coincidence … National Academy of Engineering just sent out an email on August 15 with two videos from this effort: Climate Change and Infrastructure I: Why does it matter? and Climate Change and Infrastructure II: Who Should Address it?)

A major challenge is how to include non-stationarity into design. I have written a couple of blogs about non-stationarity. In this case, non-stationarity really means that the weather in the future will not have the same characteristics as the weather of the past. I wrote about this from the point of view of farming in this entry and, more recently, with a sea level rise perspective. This week, the weather has offered us an excellent case study in stationarity. Flooding.

As documented in the 2014 National Climate Assessment, in the US Midwest, including the Great Lakes, since 1958 the amount of precipitation occurring in very heavy events (top 1%) has increased by 37%. In the Northeast, the increase has been more than 70%. Even in the drought-stricken Southwest, there has been a 5% increase in extremely heavy rain events. This is an observed trend. Such changes are consistent with the guidance provided by climate models, as well as with the foundational principles from thermodynamics. This convergence of observations, theory and projections provide confidence that we have usable information.

In Southeast Michigan on August 11-12, 2014 a storm surprised Detroit with more than 4 inches of rain and regional flooding. I say surprised because the storm caused far more rain than forecast. On August 13, 2014, the Northeast Regional Climate Center reported a more than 13 inch rainfall total on Long Island, a greater that a 200-year event – a rainfall amount normally associated with tropical storms and hurricanes.

I have referred to the 2012 flood in Duluth, Minnesota a number of times. The magnitude of that flood defied historical precedence, and was classified as greater than a 500-year event. Researching this blog, I am reminded of floods, again, in Minnesota in 2014. In many parts of Minnesota, 2014 is tracking to be the wettest year on record.

These floods have overwhelmed drainage systems, leading to destruction of many roads, structural damage and loss of life. In rural areas, the floods are challenging planting. They have become so regular that new farm machinery is being purchased to accommodate spring floods. The damage caused by these weather events reveals existing vulnerabilities. They compel the need to plan for events that have, previously, occurred less frequently than once a century occurring on the order of decades.

Marshall Shepherd is hosting a new Weather Channel show called WXGeeks. He has a WU blog on recent urban floods. He writes a simple equation

Urban Flooding =
Increase in intensity of top 1% rain events
+ expanding urban impervious land cover
+ storm water management engineered for rainstorms of "last century"

This equation shows both the role of climate change and how humans change the surface. What becomes obvious is the role of engineering both in solving the problem as well as potentially exacerbating the problem. (Rood’s old blog on Balancing the Budget, Water Resource Foundation on Infrastructure)

I close with a blog from the American Society of Civil Engineers, entitled, Bridging the Gap between Climate Change Science and Civil Engineering Practice. In the piece Richard Wright states that the Society is writing a white paper on climate change with the purpose of

Foster understanding and transparency of analytical methods necessary to update and describe climate, weather and extreme events for planning and engineering design of the built and natural environments.

Identify (and evaluate) methods to assess impacts and vulnerabilities caused by changing climate conditions on the built and natural environments.

Promote development and communication of best practices for addressing uncertainties associated with changing conditions, including climate, weather, extreme environments and the nature and extent of the built and natural environments, in civil engineering practice.


Will be working to make those things happen sooner rather than later,

r

Comments (138) Permalink | A A A
About The Author
I'm a professor at U Michigan and lead a course on climate change problem solving. These articles often come from and contribute to the course.

Recent Articles

Climate Change, Engineering, Stationarity and Applied Climate

Climate Change, Engineering, Stationarity and Applied Climate

or

Something New, Something Fantastic

Some years ago there was a Brevity comic strip with a man, John, standing at the supermarket checkout. The caption was, “Suddenly John realized he didn't want paper or plastic. He wanted something new… something fantastic.” You can see it here.

I try in my WU blog to find a niche that is different from other clima...

Read Article - Comments (138)

Tracking El Niño: Summertime Update

Tracking El Niño: Summertime Update

Back in May 2014, I wrote a couple of blogs about El Niño predictions for this year (Tracking El Niño and Underlying Models). For those who need it, there are links to basic information such as definitions of terms in those blogs. This entry is an update.

One quote I want to bring forward from the May 20, 2014 entry, “Note, none of these centers are predicting, yet, strong, super or monster. I’m no...

Read Article - Comments (248)

Models and Planning for Climate Change

Models and Planning for Climate Change

I have written many blogs about models and modeling of climate. My collection includes a 2012 tutorial approach where I show that climate modeling is the process of calculating a budget, with many similarities to keeping the balance of a checking account (Introduction and end). In 2012, I wrote a piece on uncertainties in models and a number of ways to evaluate and to place model uncertainty in decision making. I...

Read Article - Comments (308)

Monday It Will be 80 degrees in Yellowknife

Monday It Will be 80 degrees in Yellowknife

The forecast for Monday in Yellowknife in the Northwest Territories is for a high temperature of about 80 F. Pretty nice. Sunday it’s predicted to be 80 in Inuvik, here’s a link to the Inuvik Weblog: Saving lives above the Arctic Circle!

Of course the more important news is that “Temperatures could drop to sweatshirt weather by Tuesday, when an unseasonably cool pool of air is expected to reac...

Read Article - Comments (290)

Sea-Level Variability: A Primer

Sea-Level Variability: A Primer

The comments in the last blog helped me realize the complexities of sea-level rise. In this entry I am going to explore sea-level rise more rigorously. I will continue using the East Coast of the U.S. as a case study.

One of the most certain consequences of the warming planet is that sea level will rise and land will be flooded. My mantra is that the temperature of Earth’s surface will rise, ice will melt, ...

Read Article - Comments (129)

Previous Entries